Direct Numerical Simulation of Turbulent Counterflow Nonpremixed Flames

نویسندگان

  • Hong G. Im
  • Arnaud Trouvé
  • Christopher J. Rutland
  • Paul G. Arias
  • Praveen Narayanan
  • Seshasai Srinivasan
  • Chun Sang Yoo
چکیده

This paper presents our recent progress in terascale three-dimensional simulations of turbulent nonpremixed flames in the presence of a mean flow strain and fine water droplets. Under the ongoing university collaborative project supported by the DOE SciDAC Program [1] along with the INCITE 2007 Project [2], the study aims at bringing the state-of-the-art highfidelity simulation capability to the next level by incorporating various advanced physical models for soot formation, radiative heat transfer, and lagrangian spray dynamics, to an unprecedented degree of detail in high-fidelity simulation application. The targeted science issue is fundamental characteristics of flame suppression by the complex interaction between turbulence, chemistry, radiation, and water spray. The high quality simulation data with full consideration of multi-physics processes will allow fundamental understanding of the key physical and chemical mechanisms in the flame quenching behavior. In this paper, recent efforts on numerical algorithms and model development toward the targeted terascale 3D simulations are discussed and some preliminary results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient soot dynamics in turbulent nonpremixed ethylene–air counterflow flames

The dynamics of soot formation in turbulent ethylene–air nonpremixed counterflow flames is studied using direct numerical simulation (DNS) with a semi-empirical soot model and the discrete ordinate method (DOM) as a radiation solver. Transient characteristics of soot behavior are studies by a model problem of flame interaction with turbulence inflow at various intensities. The interaction betwe...

متن کامل

Direct Numerical Simulation of Nonpremixed Flame Extinction by Water Spray

The interaction of turbulent nonpremixed flames with fine water spray is studied using direct numerical simulations (DNS) with detailed chemistry. The study is of practical importance in fire safety devices that operate in the mist regime, as well as an inexpensive temperature control mechanism for gas turbines. The implemented computational methods for the Lagrangian particle-in-cell spray dro...

متن کامل

Direct numerical Simulation of turbulent nonpremixed flame extinction by water spray

This paper presents a brief overview of our INCITE 2007 project on the direct numerical simulation of nonpremixed flames subjected to turbulent flows and water spray evaporation. The simulation is a culmination of our recent developments in advanced physical submodels associated with radiative heat transfer and Lagrangian spray dynamics. One of the main objectives is to identify and verify a un...

متن کامل

Experimental and Numerical Investigation of n-Heptane/Air Counterflow Nonpremixed Flame Structure

An experimental and numerical investigation of prevaporized n-heptane nitrogen-diluted nonpremixed flames is reported. The major objective is to provide well-resolved experimental data regarding the structure and emission characteristics of these flames, including profiles of major species (N2, O2, C7H16, CO2, CO, H2), hydrocarbon intermediates (CH4, C2H4, C2H2, C3Hx), and soot precursors (C6H6...

متن کامل

Terascale direct numerical simulations of turbulent combustion — fundamental understanding towards predictive models

Advances in high-performance computational capabilities enable scientific simulations with increasingly realistic physical representations. This situation is especially true of turbulent combustion involving multiscale interactions between turbulent flow, complex chemical reaction, and scalar transport. A fundamental understanding of combustion processes is crucial to the development and optimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007